Proposed response template on written submissions prior to INC-3 (part b)

Potential Areas Identified by the Contact Groups

At its second session, the intergovernmental negotiating committee (INC) requested the secretariat to invite written submissions on:

- Any potential areas for intersessional work compiled by the co-facilitators of the two contact groups, to inform the work of INC-3.

The template below was prepared by the secretariat, in consultation with the Chair, and is meant as a guide to assist Members and Observers in preparing their written submissions.

All written submissions must be sent to unep-incplastic.secretariat@un.org. The submissions received will be made available on the INC webpage.

Please note that not all fields in the template need to be answered in the submission.

Deadline for submissions:

I. By **15 August 2023** for written submissions from observer organizations.
II. By **15 September 2023** for written submissions from Members of the Committee.

Proposed response template in written submissions prior to INC-3 (part b)

Potential areas identified by contact groups

At its second session, the Intergovernmental Negotiating Committee (INC) requested the secretariat to invite written presentations on:

- Any potential areas for intersessional work compiled by the co-facilitators of the two contact groups, to inform the work of INC-3.

The template below has been prepared by the secretariat, in consultation with the President, and serves as a guide to assist Members and Observers in preparing their written presentations.

All written submissions must be sent to unep-incplastic.secretariat@un.org. Submissions received will be made available on the INC website.

Note that not all fields in the template need to be answered in the submission.

Deadline for submissions:

I. By August 15, 2023 for written submissions from observer organizations.
II. By September 15, 2023 for written submissions from Committee members.

1 Contact Group 1 focused on Section A: Objective(s). Section B: Substantive Obligations; Contact Group 2 focused on Sections C: Means of Implementation. D: Implementation measures. E: Additional matters as contained in part II of the Annex to document UNEP/PP/INC.2/4.
INPUT ON THE POTENTIAL AREAS OF INTERSESSионаL WORK TO INFORM THE WORK OF INC-3
(FOLLOWING THE LISTs COMPILеD BY THE CO-FACILITATORS OF THE TWO CONTACT GROUPS)

POTENTIAL AREAS FOR INTERSESSионаL WORK

The list of potential areas for possible intersessional work compiled by the co-facilitators of the two contact groups at INC-2 is set out below. Members and observers may wish to provide input on one or more of these areas.

CONTACT GROUP 1:

1. Information on definitions of, e.g. plastics, microplastics, circularity
2. Information on criteria, also considering different applications and sectoral requirements, including:
 a. Chemical substances of concern in plastics,
 b. Problematic and avoidable plastic polymers and products and related applications
 c. Design e.g. for circularity, reuse
 d. Substitutes and alternatives to plastic polymers and products
3. Potential substances of concern in plastics, problematic and avoidable plastic polymers and products
4. Potential sources of release of microplastics (applications and sectors).

(Please note: A longer list is included in the co-facilitators report on discussions in contact group 1\(^2\). Submissions may also include input on any of the items in that longer list, such as, amongst others, the development of criteria to prioritise problematic and avoidable plastics; the development of targets for the reduction, reuse and repair of problematic and avoidable plastic products; or the guidelines on EPR.)

Contact Group 2:

1. To consider the potential role, responsibilities and composition of a science and technical body [to support negotiation and/or implementation of the agreement]
2. To consider potential scope of and guidance for National Action Plans [including optional and/or suggested elements]
3. To identify current provisions within existing MEAs [and other instruments] on cooperation and coordination that could be considered
4. To consider how other MEAs provide for monitoring, and suggest best practice
5. To consider options to define ‘technology transfer on mutually agreed terms
6. To further consider how a potential financing mechanism could work [including a new standalone mechanism, a hybrid mechanism, or an existing mechanism]
7. To identify options to mobilise and align private and innovative finance (including in relation to matters at 24(e) and the proposed Global Plastic Pollution Fee (GPPF))
8. To map current funding and finance available [to address plastic pollution] and determine the need for financial support for each Member
9. To identify capacity building and training needs for each Member.

Model for Delivery

<table>
<thead>
<tr>
<th>Country Name (for committee members)</th>
<th>Brazil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the Organization (for committee observers)</td>
<td>ABIPLAST - Brazilian Association of the Plastic Industry</td>
</tr>
<tr>
<td>Contact person for sending information</td>
<td>institucional@abiplast.org.br</td>
</tr>
<tr>
<td>Delivery date</td>
<td>August 15, 2023</td>
</tr>
</tbody>
</table>

Contributions on potential areas of intersessional work to inform the work of INC-3 (following the lists compiled by the co-facilitators of the two contact groups)

Potential areas for intersessional work
The list of potential areas for possible intersessional work compiled by the co-facilitators of the two contact groups in INC-2 is presented below. Members and observers may wish to contribute in one or more of these areas.

Contact group 1:

1. Information on definitions of, for example, plastics, microplastics, circularity
a. Plastics:
Plastic has its name originating from the Greek "plastikos" which means - able to be molded. It is a natural or synthetic material, obtained from petroleum products or renewable resources such as sugarcane or corn.
Plastics are part of the polymer’s family that are formed by macromolecules characterized by the multiple repetition of one or more simple chemical units, the monomers, being joined together by chemical reactions called polymerization reactions.
These materials are divided into two broad categories, thermoplastics and thermosets. Thermoplastics are those that can be molded several times by the action of temperature and pressure, so they are recyclable, while thermosets undergo chemical reactions in their molding which prevent a new fusion, so they are not recyclable.
Plastic materials have been used for many years to replace many kinds of materials such as steel, glass and wood due to their characteristics of low weight, low cost, high mechanical and chemical resistance, easily additized and are 100% recyclable.
The most consumed types of plastics today are Polyethylenes (PE), Polypropylenes (PP), Polystyrenes (PS), Polyvinyl Polychlorides (PVC) and Polyesters (PET), being called commodities due to the large production and application of these materials.
Other types of plastic materials are produced on a smaller scale due to their high cost and specific applications and are called engineering plastics or specialties, such as Polyamides (PA), Polycarbonates (PC), Polyurethanes, (PU, TPU, PUR), Fluoropolymers (PTFE), among others.
The properties of these materials depend on the size, composition, chemical structure among other factors and these properties are directly related to their applications. For example, if a material has chemical resistance, it can be used in environments where there is constant exposure to some chemical or similar product including PE used in packaging for chemicals, cleaning products such as bleach, alcohol etc., without being attacked. Another example is the PC that has excellent impact resistance and is a transparent material, so it is used in police shields, glass lenses, tiles, headlights of motor vehicles, etc.
Source: https://www.sindiplast.org.br/os-plasticos/

b. Microplastics:
Any solid plastic particle or object insoluble in water with any dimension between 1µm and 1000µm (=1mm).
Typically, a microplastic object represents a particle intentionally added to end-user products, such as cosmetics means, coatings, paints, etc. A microplastic object can also results as a fragment of the respective article.
Microplastics may show various shapes.
A large microplastic consists of any solid plastic insoluble in water with any dimension between 1mm and 5mm of plastic or a part of plastic of and end-user products or a fragment of the respective article.
Microplastic in the size range are, for example plastic pellets as intermediates for further down-stream processing such as molding, extrusion, etc. resulting to semi-finished products which are not final end-user products.
The five main categories with which it is possible to classify the shape of microplastics found in the natural environment are: pellets, fragments, films, lines and foams.
Pellets are made by petrochemicals and recyclers and are transformed into plastic products through heating and pressure. There are those termed as spheres or microspheres applied in cosmetics. The fragments originate from the fragmentation of plastic products and, therefore, fragments have irregular shapes. Toothpastes, soaps, exfoliating creams and shower gels are some examples of personal care products that can take microplastics intentionally added in their composition.

The main route of contamination of water bodies by microplastics from primary sources is from domestic and industrial effluents. On the other hand, if plastic particles are formed from environmental weathering, these are said to result from secondary sources. When plastics are improperly released and remain in the natural environment, they are subject to the action of different environmental factors, such as weathering, ultraviolet radiation and mechanical action, which can promote the fragmentation of these materials into smaller particles.

ABIPLAST understands that intentional microplastics are no longer used, as their removal from the environment is difficult. Secondary microplastics, on the other hand, originate from the mismanagement of waste and improper disposal, need to be treated through public policies, environmental education and investment.

In order to handle with plastic pellets in the industrial environment in the plants of transformers and recyclers of plastic materials, as well as in transportation and distribution, there is the Pellet Zero Program (internalization of Operation Clean Sweep – USA) https://www.abiplast.org.br/noticias/ligado-a-sustentabilidade-programa-pellet-zero-esta-disponivel-na-abiplast/ and http://pelletzero.porummarlimpo.org.br/ with a series of steps and actions in order to minimize and eliminate pellet losses to the environment. ABIPLAST has been a licensor of the program since 2014 in Brazil and has dozens of companies implementing the program in their plants.

http://pelletzero.porummarlimpo.org.br/

c. Circularity:
The circular economy is a system where materials never become waste and nature is regenerated. In a circular economy, products and materials are kept in circulation through processes like maintenance, reuse, refurbishment, remanufacture, recycling, and composting. The circular economy tackles climate change and other global challenges, like biodiversity loss, waste, and pollution, by decoupling economic activity from the consumption of finite resources.

It involves all production chains, from all sectors of the economy to the final consumer and has a positive impact on society (economic, social and environmental).

The Breaking the Plastic Wave study, by The Pew Charitable Trusts and SYSTEMIQ, in partnership with other institutions, predicts the generation of US$ 200 billion a year with the Circular Economy, in
addition to reducing greenhouse gases by 25% and creating net balance of 700,000 additional jobs by 2040.

It is urgent to concretely implement the model, which requires new functions and applications for plastic. A transversal material, present in more than 95% of the industrial matrix, inducing innovation and at the forefront of transformations, following the precepts of circularity.

Plastic is a material suitable for implementing the Circular Economy, as it is resistant, versatile and present in most industry value chains.

It is necessary to create and institute new business formats that bring economic gains to companies and society. In addition, reconfigure the production chains and bring information to the population about conscious consumption and correct disposal, with a systemic and collaborative vision.

Together, public authorities also play a fundamental role, as they can create policies based on the Circular Economy, propose legislative reforms and changes in the organization of society that facilitate the transformation from the current paradigm to the new one.

Source: https://ellenmacarthurfoundation.org/plastics-and-the-circular-economy-deep-dive
https://feitoparacircular.com.br/#economia-circular

2. Information on criteria, also considering different applications and sectoral requirements, including:
 a. Chemicals of concern in plastics
 Plastics, additives and monomers follow ANVISA resolutions harmonized with Mercosur, as well as conventions whose country is a signatory. Such resolutions and conventions bring positive lists of plastics, monomers and additives for products in contact with food and beverages, as well as the substances prohibited for manufacture, import and marketing. Here are some of them:

 REACH - Registration, Evaluation, Authorization and Restriction of Chemicals - European directive that requires the identification of the composition, application and use of all substances exported to the continent. The standard’s goal is to establish a high level of safety for human health and the environment through the registration, evaluation and authorization of all chemicals marketed in the European Union.

 The criteria defined for the registration of products are the quantity marketed and the risks they expose to health and the environment.

 This regulatory system, in force since 2007, has been approved by the European Parliament and the Council of the European Union. The implementation and management of REACH is the responsibility of **ECHA (European Chemicals Agency)**, which is premised on ensuring that the registrations of substances are kept up to date with changes in composition, identification of new uses and applications or any change regarding the production and marketing of registered products.

 RoHS - (Restrictions of the use of Certain Hazardous Substances) - Directive 2002/95/EU of the European Union, issued by the Parliament and the Council of the European Union, which limits the substances to be used in electrical and electronic equipment (EEE): cadmium (Cd), mercury (Hg),
hexavalent chromium (Cr(VI)), polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs) and lead (Pb). The second version of the standard was published in 2011, adopted in January 2013 (RoHS 2 – Directive 2011/65/EU). In 2015, some phthalates (DEHP, BBP, DBP and DIBP) were added to the list of restricted substances, applicable from 2019.

In 2018, the Ministry of the Environment, through the National Commission for Chemical Safety (CONASQ), created a Working Group for Brazilian RoHS whose work has not been resumed yet.

RDC No. 589, of December 20, 2021 amending Resolution No. 105, of May 19, 1999, approves the general provisions for packaging and plastic equipment in contact with food, the Resolution of the Collegiate Board of Directors - RDC No. 56, of November 16, 2012 and provides for the positive list of monomers, other starting substances and polymers authorized for the preparation of packaging and plastic equipment in contact with food.

Plastic packaging and equipment under predictable conditions of use shall not transfer to food undesirable, toxic or contaminant substances posing a risk to human health in quantities exceeding the total and specific migration limits determined in the DRC.

RDC No. 326, of December 3, 2019 that establishes the positive list of additives intended for the elaboration of plastic materials and polymeric coatings in contact with food and the limits of specific migration of elements.

Stockholm Convention on Persistent Organic Pollutants: adopted and opened for signature at the Conference of Plenipotentiaries held May 22-23, 2001, in Stockholm, Sweden. As of January 2018, the Stockholm Convention had 183 signatory countries, or country parties, including Brazil.

The Convention aims to ban and restrict the use of chemical substances classified as Persistent Organic Pollutants (POPs) and is one of the most innovative conventions for highlighting the insertion of the precautionary principle, the strengthening of national capacities and determining shared responsibility of the productive sectors. It consists of thirty articles and three annexes, setting out measures to reduce or eliminate emissions from intentional and unintentional production and use of the chemicals listed in Annexes A, B and C. In order to comply with the deliberations of the Stockholm Convention, member countries have an obligation to develop effective strategies for elimination, prohibition and restriction of POPs and, to this end, they must acquire a perfect understanding of the situations of said chemicals within their national territory.

Minamata Convention: The Minamata Convention on Mercury provides controls and reductions in several products, processes and industries in which mercury is used, released or emitted. Its origin comes from discussions that took place within the framework of the United Nations Environment Program (UNEP), on the risks of mercury use. Since Decision 25/5 UNEP/GC of 2009, which called on governments to develop a legally binding instrument to control the use of mercury to protect human health and the environment, a global negotiation process was initiated. About 140 countries got involved and approved the final text on January 19, 2013, in Geneva, Switzerland.

The purpose of this Convention is to protect human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds, and to establish a set of measures to achieve this goal.
These measures include controlling the supply and trade of mercury, including setting restrictions for specific sources of mercury, such as primary mining, and controlling products with added mercury and manufacturing processes in which mercury or mercury compounds are used, as well as artisanal and small-scale gold mining. Articles on mercury emissions and releases are included in the Convention, with targeted controls to reduce mercury levels, allowing flexibility to accommodate national implementation plans. In addition, it contains storage of mercury environmentally appropriated and about mercury waste, as well as contaminated areas. The text contains provisions on financial and technical support to developing countries and countries with economies in transition, as well as a financial mechanism for the provision of adequate, predictable and dedicated financial resources.

Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal: this Convention, concluded in Basel, Switzerland, on March 22, 1989, establishes control mechanisms based on the principles of notification and prior consent for the import, export and transit of hazardous wastes and others, in order to curb illegal trafficking and provide the intensification of international cooperation for the environmentally for waste management.

One of the objectives of the convention is to promote proper waste management of hazardous waste and others internally in the country's party, so that their movement can be reduced. Guidelines about waste management are elaborated and published, serving as a guide.

The Convention recognizes the sovereign right of any country to define requirements for the entry and disposal in its territory of other wastes considered or defined as hazardous in its national legislation. Both the import and export of hazardous wastes and controlled wastes will be allowed between the signatory countries of the Basel Convention.

In Brazil, the Convention was fully internalized through Decree No. 875, of July 19, 1993, and is also regulated by Conama Resolution No. 452, July 2, 2012.

Sources:

https://cefic.org/

b. Problematic and avoidable polymers and plastic products and related applications

All types of waste, in general, are problematic in the circular economy context, since they can generate pollution. The waste problematic is the inadequate destination, in which those that are present in the composition of multiple items are highlighted, such as plastic, which is a highly versatile material and has high consumption, for its flexibility and accessibility. Plastic products are extremely necessary because they are present in almost all transformation industries of economic relevance (automotive, electronics / electronics, food, hygiene / cosmetics / cleaning, textile, pharmaceutical / medical etc.) as a form of raw material, resins, packaging and final product.

Advantages: they are resistant, lightweight, flexible and rigid, depending on the application, affordable, easy and have low cost to transport, protect various products and are recyclable.

ABIPLAST believes that it is necessary to look deep into the discussions about what it is to be "problematic", while it is also necessary to understand the function and usefulness of each product or solution existing on the market.

Plastic products are developed to be innovative and promote solutions to market problems and demands (example: a plastic packaging is a solution for the preservation and transport of food, sometimes requiring the combination of materials to ensure the conservation of the packaged product, maintaining its fresh and increasing the shelf life, such as multilayer flexible packaging or a disposable cup as a solution for consumption while maintaining hygiene and practicality). Like any product developed, regardless of the material, bad waste management after consumption can cause environmental problems.

Although the lower degree of recyclability of some plastic materials by presenting in their combination different types of materials and colors mixed that can difficult recycling after their consumption and disposal, there are technologies available to recycle most of it. It is important to evaluate the scalability of recovery, promoting market conditions that allow the financial viability of recycling these products. In addition, to seek redesign solutions that already allow higher rate of recyclability.

ABIPLAST does not understand that some plastic products are "problems" and does not consider them as unnecessary. At this time, some problematic materials with lower recyclability capacity (either by the design of the packaging / product, or by infrastructure not available for recycling) may be problematic, but necessary, given the function’s product.

Some items manufactured in plastic, in certain uses, can be considered avoidable, but it depends on the result of a market demand for plastic solutions. Single-use plastics, for example, have applicability to a part of the population that is necessary like disposable cups in hospitals, laboratories, places in industries that have good manufacturing practices to not generate cross-contamination.
As a mitigating suggestion, these items may be available for access to the user, provided that their use is demanded. There are programs that collect used cups and send them to recycle.

Any solid plastic particle or object insoluble in water with any dimension between 1µm and 1000µm (=1mm).

Typically, a microplastic object represents a particle intentionally added to end-user products, such as cosmetics means, coatings, paints, etc. A microplastic object can also results as a fragment of the respective article.

Microplastics may show various shapes.

A large microplastic consists of any solid plastic insoluble in water with any dimension between 1mm and 5mm of plastic or a part of plastic of and end-user products or a fragment of the respective article. Microplastic in the size range are, for example plastic pellets as intermediates for further down-stream processing such as molding, extrusion, etc. resulting to semi-finished products which are not final end-user products.

The five main categories with which it is possible to classify the shape of microplastics found in the natural environment are: pellets, fragments, films, lines and foams.

Pellets are those from petrochemicals and recyclers and are transformed into plastic products through heating and pressure. There are those termed as spheres or microspheres applied in cosmetics.

The fragments originate from the fragmentation of plastic products and, therefore, fragments have irregular shapes.

Toothpastes, soaps, exfoliating creams and shower gels are some examples of personal care products that can take microplastics intentionally added in their composition.

The main route of contamination of water bodies by microplastics from primary sources is from domestic and industrial effluents. On the other hand, if plastic particles are formed from environmental weathering, these are said to result from secondary sources. When plastics are improperly released and remain in the natural environment, they are subject to the action of different environmental factors, such as weathering, ultraviolet radiation and mechanical action, which can promote the fragmentation of these materials into smaller and smaller particles.

ABIPLAST understands that intentional microplastics are no longer used, as their removal from the environment is difficult. Secondary microplastics, on the other hand, originate from the mismanagement of waste and improper disposal, being treated through public policies and environmental education and investment.

With regard to the handling of pellets in the industrial environment in the plants of transformers and recyclers of plastic materials, as well as in transportation and distribution, there is the Pellet Zero Program (internalization of Operation Clean Sweep – USA) https://www.abiplast.org.br/noticias/ligado-a-sustentabilidade-programa-pellet-zero-esta-disponivel-na-abiplast/ and http://pelletzero.porummarlimpo.org.br/ with a series of steps and actions in order to minimize and eliminate pellet losses to the environment. ABIPLAST has been a licensor of the program since 2014 in Brazil and has dozens of companies implementing the program in their plants.
Flexible plastics (flexible film) are used in the manufacture of flexible packaging, designed to minimize the use of packaging materials. The combination of the flexible film with the other materials improves the barrier properties of the packaging. The packaging-to-product ratio is 5 to 10 times lower than the other alternatives, due to its low weight and volume, which allows the reduction of the energy used in transport and storage, and consequently reduction of the environmental footprint.

Flexible packaging protects and preserves products, increases the shelf life of a wide variety of perishable products, as well as preserving the nutrition, taste and consistency of products, helping to reduce food waste (the world’s major environmental and economic problem), saving important resources, being an essential part of the food chain.

The generation of plastic waste is also reduced, due to the low weight and volume, when compared to the packaging alternatives used for the same purpose.

The same characteristics that provide advantages of its use, become a hindrance to its recycling, because the material is sold by weight, being necessary to collect a large amount of flexible packaging to reach the weight that enables sorting and marketing.

Among the uses of flexible plastics, we can highlight the multilayer flexible packaging, those manufactured with layers of different types of plastics, which currently have a low rate of recyclability (volume destined for recycling is still low, as well as the quality of the material), due to excess dirt and difficult to remove. To make the recycling of this waste economically viable, it is necessary to invest in this recycling chain, so that there is a relevant volume and quality of the material to be recycled.

With regard to the recycling aspect, the investment in some actions seeks to contribute to the increase in the recycling rate of these materials, such as: regional development of the collection system, sorting of waste in cooperatives, recycling and transformation of PCR (Post-Consumer Recycled) into new products. There are no substitute materials, at the moment, that bring quality and safety in transportation and avoid food waste at the end of the chain for the consumer.

Sources:
ecologia.ib.usp.br/portal/microplastico/livro_todo.pdf
https://ceflex.eu/
http://pelletzero.porummarlimpo.org.br/

c. Design, e.g. for circularity, reuse:
ABIPLAST, which has as a priority the concrete implementation of the Circular Economy in the Plastic production chain, has numerous initiatives aimed at the development, application and scaling of plastic circularity, as well as support for actions that are aligned with the theme. Among the initiatives carried out and supported by ABIPLAST, the main ones are listed below.
AGIR – Aliança Nacional pela Gestão, Recuperação e Reciclagem das Embalagens em Geral e pela Circularidade dos Resíduos

ABIPLAST and more than 30 Associations and institutions have come together to create a transparent and democratic space with the purpose of sharing learnings, promoting synergies and, above all, rethinking actions and strategies for the greater effectiveness of reverse logistics of packaging in general in Brazil. Among the actions of AGIR are the promotion of studies, research and publications, the articulation with bodies of interest, the promotion of seminars, technical meetings, promotion of campaigns and other measures that collaborate for the management of waste and confrontation of climate change, as well as the support to the systematization of information of its members.

Recircula Brazil

Pioneering platform for proving the circularity of plastic. Tracking plastic waste, from its origin to its reinsertion as raw material in the manufacture of a new product, is the goal of the digital platform developed by ABIPLAST and ABDI - Agência Brasileira de Desenvolvimento Industrial in partnership with the Central de Custódia. Recircula Brasil allows the industry to prove the circularity of plastic, valuing the recycled raw material with transparency and technology.

Contact: recirculabrasil@abiplast.org.br

Descarta Aí

To promote the recycling of post-consumer plastic buckets in civil construction, the Descarta Aí project allows consumers and self-employed construction professionals to have an environmentally appropriate and easily accessible option for the disposal of buckets and their lids after the consumption of products. The project began in 2022 and is the result of a partnership between ABIPLAST and COFABI - Câmara Setorial dos Fabricantes de Baldes Industriais. The project has voluntary delivery points in cities such as São Paulo, Curitiba and Fortaleza.

Isopor Amigo

In order to make citizens aware of the feasibility of recycling EPS / XPS, the Styrofoam® Friend program under the management of ABIPLAST with several actors, promotes the correct destination of trays, boxes, lunch boxes and other packaging in these materials. The program, which began at the Perini Business Park in Joinville - the largest multi-sector business park in South America - allowed this waste to have an average compliance level of 95%, indicating the increasingly correct disposal of this waste by the population. Since the beginning of the project, in 2020, 3.5 tons of Styrofoam® have been recycled, of which about 300,000 are lunch boxes, raising the level of waste quality from 23% to 96% in the lunch boxes disposed in the voluntary delivery point. In 2022, the program had about 200 hours of action, including training and visits.

Information: www.isoporamigo.com.br

Business Models for MSW Management and Reverse Logistics

In order to develop partnership models between companies and municipalities with financial sustainability, the project proposed models capable of optimizing the management of municipal solid waste and contributing to the reverse logistics of products, uniting private and municipal actors.
The initiative is the result of the partnership between ABIPLAST and ABDI - Agência Brasileira de Desenvolvimento Industrial and counted on the strategic partnership of the Rede pela Circularidade do Plástico.

Rede pela Circularidade do Plástico

The Rede pela Circularidade do Plástico is a space for cooperation between the actors of the plastic production chain with the objective of proposing solutions and developing projects in favor of the circular economy of the material, with a focus on packaging. The initiative has been mobilized by ABIPLAST since 2018 and is considered a case of governance of this chain, as it includes several links, such as petrochemicals, transformers, recyclers, cooperatives of collectors of recyclable materials, brand owners, retail and waste managers. Among the deliveries of 2022 are the "Recicla Guaruja" with more than 30 thousand tons of recovered plastic waste, the "Retorna" tool with more than 200 analyzes carried out, the "ReFlexível" project, a project for the recovery and reintroduction of post-consumer flexible packaging as a raw material in the production cycle and the Design Guides for Rigid and Flexible Packaging with guidelines for the circularity and recycling of packaging.

Information: www.redeplastico.com.br

- **Retorna**

An initiative of the Rede pela Circularidade do Plástico, Retorna is an online and free tool that calculates the recyclability index of plastic packaging, based on the Brazilian scenario in addition to the specificities of each region. The user completes a 3-step technical questionnaire for packaging evaluation using grades ranging from A to E. Each aspect of the project is evaluated for best outcome and technical insights, in addition to determining whether the packaging can be recycled, the tool also provides the actual recycling capacity by region of the country.

Information: https://www.redeplastico.com.br/retorna-projeto/

- **ReFlexível**

In 2022, the Rede pela Circularidade do Plástico developed the ReFlexível project, in partnership with the SENAI Institute of Innovation, through quota companies of the Flexible Working Group of the Packaging Design Axis, which consisted of proving the technical feasibility of recycling post-consumer waste from flexible packaging.

The main objective of ReFlexível was to study the recycling and reprocessability of post-consumer flexible packaging, that is, plastic packaging that, after receipt and sorting in cooperatives are not yet used due to their technical characteristics and lack of value in the recyclable market.

In the first stage of the project the post-consumer flexible packaging was sorted by Cooperativa Viva Bem during 3 weeks of work, mainly the pure PET/PE materials (~ 80 to 90% PE and 10 to 20% PET) and pure metallized BOPP of various products were separated in the cooperative. The residues were washed, ground, dried and granulated.

In the next step the granulated material was transformed by extrusion processes plate, film, blowing and injection. To improve performance during transformation, a compatible additive was inserted. At this stage, it is important to highlight the better performance of BOPP with aluminum to the detriment of PET with PE, so BOPP/Al was the material chosen for the final stage of the project.
The last stage of the project was the construction of a prototype selected in the Design Thinking workshop, a school chair, backrest and seat, was made, using the molds already existing in the SENAI Institute of Innovation, thus proving the technical feasibility of mechanical recycling of post-consumer waste of flexible packaging.

Also noteworthy is the use of flexible plastics in monolayer flexible packaging, which is an important part of the modern world. They protect food and other products. They help ensure that products reach the consumer safely and fresh, preserving nutrients, taste and quality. This reduces product waste, protects and often uses less material than other packaging alternatives. They are very light and thin, reducing the environmental impact of transportation.

Quality makes them usable; weight and resource efficiency also pose a challenge when packaging is discarded. The flexible packaging value chain recognizes and is working to solve the challenges needed to ensure that packaging has a return flow to the economy in place of virgin materials.

Movimento Plástico Transforma

In order to highlight the use in a creative and responsible way, the Movimento Plástico Transforma was created in 2016, the result of the partnership between ABIPLAST and Braskem. The initiative, which has already impacted thousands of people, develops content, educational and interactive actions, encourages innovation and shows that plastic, combined with technology, creativity and responsibility, brings countless possibilities for our daily lives and for the future.

Among the deliveries of 2022 are the Recicla Orla, a cleaning effort on Leme beach in Rio de Janeiro, the interactive space "Circular Plastic Economy" at the Catavento Museum in São Paulo and the collection and recycling of plastic cups discarded in the São Silvestre race, transformed into new products donated to public entities.

Information: www.plasticotransforma.com.br

SENAPLAS

SENAPLAS is a seal of valorization of recycling companies and performance of recycled post-consumer plastic resin. SENAPLAS - Company identifies and values recyclers who work within the social, environmental and economic criteria required by law. Once this seal is acquired, the company is able to acquire SENAPLAS - Product that certifies the recycled resin in order to enhance the product and ensure higher quality, based on the methodology of the European certification EuCertPlast.

The seal is the result of a partnership between ABIPLAST and CNRPLAS - Câmara Nacional dos Recicladores de Material Plástico.

Sistema de Logística Reversa de Embalagens | Acordo Setorial

In compliance with the PNRS - Política Nacional de Resíduos Sólidos, the objective of the Programa Nacional de Logística Reversa de Embalagens, through the Acordo Setorial de Embalagens in General, is to increase post-consumer recycling rates, one of its initiatives, for example, structuring investments in sorting recyclable waste.

ABIPLAST, along with other industry associations, is a member of the Coalizão Embalagens that, since 2015, has been working on the Program.
Information: www.coalizaoembalagens.com.br

Separe. Não Pare.

Initiatives that belong to the Coalizão Embalagens, to meet the PNRS. The Campaign seeks to inform, inspire and mobilize the Brazilian population to properly separate and dispose of domestic waste. With a dedicated portal and active presence in the main social networks, it delivers daily exclusive and educational content, assisting in the creation and consolidation of the culture of recycling.

Information: www.separenaopare.com.br @separenaopare

Programa Pellet Zero (PPZ)

The objective of the Program is to engage and implement actions in the sector in a continuous action to reduce the loss of pellets in the processing and recycling plants of plastic materials, encompassing carriers and distributors. ABIPLAST was the first licensor of the Operation Clean Sweep - OCS program in 2014, adapting the initiative to the particularities of the Brazilian plastic industry. ABIPLAST has 15 companies – including transformers, distributors and carriers – and its 27 units in implementation of the Programa Pellet Zero - PPZ.

d. **Substitutes and alternatives for polymers and plastic products**

In proposing replacement or banning, the criteria for substitution by alternative materials must be observed, which must undergo Life Cycle Assessment studies (substitution decision process must be based on technical and well-defined criteria in a broad study such as a LCA), according to the following examples of LCA studies: WOODEN PALLET X POLYETHYLENE PALLET, PAINT PACKAGING: TINPLATE BUCKET X POLYPROPYLENE BUCKET, KRAFT PAPER BAG X RAFFIA BAG and PAPER CUPS X PP DISPOSABLE CUPS, among others.

The definition of criteria for more sustainable alternatives or that could be substitutes should occur from specific scientific studies, considering the entire chain of production, consumption and disposal of the product. In this sense, the Life Cycle Assessment (LCA) currently consists of an important tool that seeks to quantify the environmental impacts of a product or service, considering its entire life cycle.

LCA - Life Cycle Assessment - is a methodology standardized by ISO 14040 and 14044 standards of the International Organization for Standardization (ISO).

According to report “Turn off the tap – How the world can end plastic pollution and create a circular economy”, published in 2023 pela UN Environment, it is necessary to evaluate the substitutions with caution: “Shaping the market for plastic alternatives to enable sustainable substitutions, thus avoiding replacing plastic products with alternatives that displace rather than reduce impacts”.

Laws that require plastic materials to be replaced by biodegradable and compostable materials do not observe that the production capacity of raw materials, globally substitutes, is incipient. Even if there was adequate supply, products manufactured with these materials should be destined for industrial composting. Brazil is far from having an adequate structure for collection and composting. Given that most of the discarded items do not make it to the composting plants, which exist in insufficient numbers, the effort will be in vain. Thousands of Brazilians will lose jobs as many of the substitute
products will be imported. It is important to remember that 90% of ocean plastic waste comes from rivers in Asia and Africa.

Prohibition laws bring legal uncertainty, interfere in the competitiveness and financial planning of companies, causing an impact on investments, job creation and even the maintenance of industrial activity. The plastic transformation industry is aligned with government solutions, and makes constant investments in new sustainable technologies, in addition to fostering the circular economy, awareness campaigns and the expansion of the recycling of plastic products constantly reducing their impact.

The ban on disposables impacts on the consumer’s pocket. These products are more affordable than similar ones produced with alternative materials. In an analysis carried out by FIPE - Fundação Instituto de Pesquisas Econômicas and Instituto Plastivida in 2013, the impact of the additional expenses for the replacement of free conventional plastic grocery bags with substitute packaging was presented. Average spending on packaging per household can be up to 0.328% as it bans the distribution of free plastic bags.

According to UN Environment’s “Single-Use Plastics, a Roadmap for Sustainability” report, before there are applications for bans and levies for single-use plastic products, it is important that policymakers consider 10 steps, including: having a baseline, evaluating possible actions, assessing impacts of the desired option and engaging stakeholders, including government and industry. According to the report, "Among the elements to be analyzed, we highlight the institutional capacity and the existing economic conditions to ensure that the instruments considered are realistic and have great chances of being successfully implemented" some of the instruments cited by the document to minimize the waste of single-use plastic products are voluntary reduction strategies and environmental education of the population.

Concern for the environment is legitimate, but prohibition laws do not present viable solutions for the replacement of materials. The problem is extremely complex, and its solution requires structural changes, which require planning, resources and time to implement. The ban on single-use plastics is an immediate measure that generates increased pollution, inflation, unemployment and health insecurity.

The solution is not to ban the use of single-use plastic, but rather to ensure that it is disposed of and recycled properly. This will benefit the environment, generate income and reduce the waste of natural resources such as oil and energy.

Sources:
https://www.picplast.com.br/avaliacao-de-ciclo-de-vida

3. Substances of potential concern in problematic and avoidable plastics, polymers and plastic products
In Brazil, Agência Nacional de Vigilância Sanitária - ANVISA, has resolutions for the use of polymers, their initiators and additives in a safe way for the manufacture of food packaging. These resolutions have lists,
with materials and their concentrations allowed for contact of the packages, which contain them, with the food.

All packaging, equipment or article intended for direct contact with food and beverages that will be marketed in Brazil must comply with the regulations published by the National Health Surveillance Agency, even if the product is imported. That is, declarations of conformity and reports based on international regulations such as FDA (Food and Drug Administration) or European recommendations/regulations are not valid.

ANVISA’s legislation on food contact materials is harmonized within the Mercosur framework, which, in turn, publishes the GMC (Common Market Group) Technical Regulations. And in Brazil, ANVISA is the body responsible for internalizing and publishing technical regulations.

In Brazil, packaging is exempt from registration (except PET-PCR packaging) as provided for by Resolutions No. 23, of 03/15/2000 and RDC No. 27, of 08/06/2010. Packaging, equipment and plastic articles must meet some resolutions.

According to the definition of RDC n° 91, of 11/05/2001 (corresponding to the Mercosur GMC Technical Regulation N.09/92) which presents the general criteria for packaging and equipment for contact with food, positive lists are exhaustive relations of substances that have proven to be physiologically innocuous in animal tests and whose use is authorized for the manufacture of materials in contact with food. That is, they are relations of chemical substances that have their use allowed in the composition of a material or article intended for direct contact with food.

And often, the substances listed have restrictions on use and limits that should be met. That is, when a formulation assessment is made against the positive lists, it is possible to raise the substances that have specific migration limits (SML) and, consequently, the tests that must be carried out on the finished article.

Generally, the formulation evaluation step against the positive lists should be performed by the manufacturers of the inputs (for example: resins, masterbatches, coatings and others). The result of this evaluation is a statement or document stating that the formulation complies with the positive lists and indicating which tests will be carried out in the final article.

Anvisa RDCs No. 326/2019 and No. 56/2012 correspond to Mercosur Technical Regulations GMC 39/19 and 02/12, respectively and RDC No. 589/2021, incorporates Mercosur GMC resolutions 19/2021, 20/2021 and 21/2021. RDC 326/2019 presents the positive list of additives and can be used in the manufacture of plastic materials and RDC 56/2012 presents the positive list of monomers, starting substances and polymers.

Plastics, additives and monomers follow ANVISA resolutions harmonized with Mercosur, as well as conventions whose country is a signatory. Such resolutions and conventions bring positive lists of plastics, monomers and additives for products in contact with food and beverages, as well as the substances prohibited for manufacture, import and marketing. Here are some of them:

REACH - Registration, Evaluation, Authorization and Restriction of Chemicals - European directive that requires the identification of the composition, application and use of all substances exported to the continent. The aim of the standard is to establish a high level of safety for human health and the
environment through the registration, evaluation and authorization of all chemicals marketed in the European Union.

The criteria defined for the registration of products are the quantity marketed and the risks they pose to health and the environment.

This regulatory system, in force since 2007, has been approved by the European Parliament and the Council of the European Union. The implementation and management of REACH is the responsibility of ECHA (European Chemicals Agency), which is premised on ensuring that the registrations of substances are kept up to date with changes in composition, identification of new uses and applications or any change with regard to the production and marketing of registered products.

RoHS - (Restrictions of the use of Certain Hazardous Substances) - Directive 2002/95/EU of the European Union, issued by the Parliament and the Council of the European Union, which limits the substances to be used in electrical and electronic equipment (EEE): cadmium (Cd), mercury (Hg), hexavalent chromium (Cr(VI)), polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs) and lead (Pb). The second version of the standard was published in 2011, adopted in January 2013 (RoHS 2 – Directive 2011/65/EU). In 2015, some phthalates (DEHP, BBP, DBP and DIBP) were added to the list of restricted substances, applicable from 2019.

In 2018, the Ministry of the Environment, through the National Commission for Chemical Safety (CONASQ), created a Working Group for Brazilian RoHS whose work has not yet been resumed.

RDC No. 589, of December 20, 2021 amending Resolution No. 105, of May 19, 1999, approves the general provisions for packaging and plastic equipment in contact with food, the Resolution of the Collegiate Board of Directors - RDC No. 56, of November 16, 2012 and provides for the positive list of monomers, other starting substances and polymers authorized for the preparation of packaging and plastic equipment in contact with food.

Plastic packaging and equipment under foreseeable conditions of use shall not transfer to food undesirable, toxic or contaminant substances posing a risk to human health in quantities exceeding the total and specific migration limits determined in the RDC.

RDC No. 326, of December 3, 2019 that establishes the positive list of additives intended for the elaboration of plastic materials and polymeric coatings in contact with food and the limits of specific migration of elements.

Stockholm Convention on Persistent Organic Pollutants: adopted and opened for signature at the Conference of Plenipotentiaries held May 22-23, 2001, in Stockholm, Sweden. As of January 2018, the Stockholm Convention had 183 signatory countries, or country parties, including Brazil.

The Convention aims to ban and restrict the use of chemical substances classified as Persistent Organic Pollutants (POPs) and is one of the most innovative conventions for highlighting the insertion of the precautionary principle, the strengthening of national capacities and determining shared responsibility of the productive sectors. It consists of thirty articles and three annexes, setting out measures to reduce or eliminate emissions from intentional and unintentional production and use of the chemicals listed in Annexes A, B and C. In order to comply with the deliberations of the Stockholm Convention, member countries have an obligation to develop effective strategies for elimination, prohibition and restriction of
POPs and, to this end, they must acquire a perfect understanding of the situations of said chemicals within their national territory.

Minamata Convention: The Minamata Convention on Mercury provides controls and reductions in a number of products, processes and industries in which mercury is used, released or emitted. Its origin comes from discussions that took place within the framework of the United Nations Environment Program (UNEP), on the risks of mercury use. Since Decision 25/5 UNEP/GC of 2009, which called on governments to develop a legally binding instrument to control the use of mercury in order to protect human health and the environment, a global negotiation process was initiated. About 140 countries got involved and approved the final text on January 19, 2013, in Geneva, Switzerland.

The purpose of this Convention is to protect human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds, and to establish a set of measures to achieve this goal.

These measures include controlling the supply and trade of mercury, including setting restrictions for specific sources of mercury, such as primary mining, and controlling products with added mercury and manufacturing processes in which mercury or mercury compounds are used, as well as artisanal and small-scale gold mining. Articles on mercury emissions and releases are included in the Convention, with targeted controls to reduce mercury levels, allowing flexibility to accommodate national implementation plans. In addition, it contains measures on environmentally sound interim storage of mercury and on mercury waste, as well as contaminated areas. The text contains provisions on financial and technical support to developing countries and countries with economies in transition, as well as a financial mechanism for the provision of adequate, predictable and dedicated financial resources.

Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal: this Convention, concluded in Basel, Switzerland, on March 22, 1989, establishes control mechanisms based on the principles of notification and prior consent for the import, export and transit of hazardous wastes and other wastes, in order to curb illegal trafficking and provide for the intensification of international cooperation for the environmentally sound management of such wastes.

One of the objectives of the convention is to promote the environmentally sound management of hazardous wastes and other wastes internally in the countries party, so that their movement can be reduced. In this sense, guidelines on the environmentally appropriate management of some types of waste are elaborated and published, serving as a guide for countries.

The Convention recognizes the sovereign right of any country to define requirements for the entry and disposal in its territory of other wastes considered or defined as hazardous in its national legislation. Both the import and export of hazardous wastes and controlled wastes will be allowed between the signatory countries of the Basel Convention.
In Brazil, the Convention was fully internalized through Decree No. 875, of July 19, 1993, and is also regulated by Conama Resolution No. 452, July 2, 2012.

Regarding the terminology "problematic and avoidable polymers and plastic products", it should be considered that all types of waste, in general, are problematic in the context of the circular economy, since they can generate pollution in the environment. The problem of waste is in the inadequate destination, in which those that are present in the composition of multiple items are highlighted, such as plastic, which is a highly versatile material and has high consumption, for its flexibility and accessibility. Plastic products are extremely necessary because they are present in almost all transformation industries of economic relevance (automotive, electronics / electronics, food, hygiene / cosmetics / cleaning, textile, pharmaceutical / medical etc.) as a form of raw material, packaging, parts and final product.

Advantages: they are resistant, lightweight, flexible and rigid, depending on the application, affordable, offer ease and lower cost for transportation / freight, protect various products and are recyclable).

ABIPLAST believes that it is necessary to deepen the discussions about what it is to be "problematic", while it is also necessary to understand the function and usefulness of each product or solution on the market.

Plastic products are developed as innovations and solutions to market problems and demands (example: a plastic packaging is a solution for the preservation and transport of food, sometimes requiring the combination of materials to ensure the conservation of the packaged product, maintaining its freshness and increasing shelf life), as is the case of multilayer flexible packaging or a disposable cup as a solution for consumption while maintaining hygiene and practicality). Like any product developed, regardless of the material, poor waste management after consumption can cause environmental problems.

Although there are products with a lower degree of recyclability – either by presenting, in their combination, different types of materials and colors – that tend to hinder recycling after their consumption and disposal, there are technologies available to recycle most plastic materials, and it is important, then, to evaluate the scalability of recovery of this waste, promoting market conditions that allow the financial sustainability of the recycling of these products (in addition, of course, to seek redesign solutions that already allow for a higher rate of recyclability).

ABIPLAST does not understand that some plastic products are "problems", not considering them as unnecessary. At this time, some problematic are those with lower recyclability capacity (either by the design of the packaging / product, or by infrastructure not available for recycling) may be problematic, but necessary, given the function of the product.

Some items manufactured in plastic material, in certain uses, can be considered avoidable, but without generalizations, because plastic solutions are the result of a market demand. Among these items, we can mention single-use plastics, however they have applicability to a part of the population that is necessary (eg disposable cups in hospitals, laboratories - they are used and mandatory in places that have GMP within companies so as not to generate cross-contamination).

As a mitigating suggestion, these items may be available for access to the user, provided that their use is demanded. There are programs that collect used cups and send them to recycle.
Any solid plastic particle or object insoluble in water with any dimension between 1µm and 1000µm (=1mm).

Typically, a microplastic object represents a particle intentionally added to end-user products, such as cosmetics means, coatings, paints, etc. A microplastic object can also results as a fragment of the respective article.

Microplastics may show various shapes.

A large microplastic consists of any solid plastic insoluble in water with any dimension between 1mm and 5mm of plastic or a part of plastic of and end-user products or a fragment of the respective article.

Microplastic in the size range are, for example plastic pellets as intermediates for further down-stream processing such as molding, extrusion, etc. resulting to semi-finished products which are not final end-user products.

The five main categories with which it is possible to classify the shape of microplastics found in the natural environment are: pellets, fragments, films, lines and foams.

Pellets are those from petrochemicals and recyclers and are transformed into plastic products through heating and pressure. There are those termed as spheres or microspheres applied in cosmetics.

The fragment is originated from the fragmentation of plastic products and, therefore, fragments have irregular shapes.

Toothpastes, soaps, exfoliating creams and shower gels are some examples of personal care products that can intentionally add microplastics in their composition.

The main route of contamination of water bodies by microplastics from primary sources is from domestic and industrial effluents. On the other hand, if plastic particles are formed from environmental weathering, these are said to result from secondary sources. When plastics are improperly released and remain in the natural environment, they are subject to the action of different environmental factors, such as weathering, ultraviolet radiation and mechanical action, which can promote the fragmentation of these materials into smaller and smaller particles.

ABIPLAST understands that intentional microplastics are no longer used, as their removal from the environment is difficult. Secondary microplastics, on the other hand, originate from mismanagement of waste and improper disposal, being treated through public policies and environmental education and investment.

Regarding the handling of pellets in the industrial environment in the plants of transformers and recyclers of plastic materials, as well as in transportation and distribution, there is the Pellet Zero Program (internalization of Operation Clean Sweep – USA) https://www.abiplast.org.br/noticias/ligado-a-sustentabilidade-programa-pellet-zero-esta-disponivel-na-abiplast/ and http://pelletzero.porummarlimpo.org.br/ with a series of steps and actions in order to minimize and eliminate pellet losses to the environment. ABIPLAST has been a licensor of the program since 2014 in Brazil and has dozens of companies implementing the program in their plants.

Flexible plastics (flexible film) are used in the manufacture of flexible packaging, designed to minimize the use of packaging materials. The combination of the flexible film with the other materials improves
the barrier properties of the packaging. The packaging-to-product ratio is 5 to 10 times lower than the other alternatives, due to its low weight and volume, which allows the reduction of the energy used in transport and storage, and consequently reduction of the environmental footprint.

Flexible packaging protects and preserves products, increases the shelf life of a wide variety of perishable products, as well as preserving the nutrition, taste and consistency of products, helping to reduce food waste (the world's major environmental and economic problem), saving important resources, being an essential part of the food chain.

The generation of plastic waste is also reduced, due to the low weight and volume, when compared to the packaging alternatives used for the same purpose.

The same characteristics that provide advantages of its use, become a hindrance to its recycling, because the material is sold by weight, being necessary to collect a large amount of flexible packaging to reach the weight that enables sorting and marketing.

Among the uses of flexible plastics, we can highlight the multilayer flexible packaging, those manufactured with layers of different types of plastics, which currently have a low rate of recyclability (volume destined for recycling is still low, as well as the quality of the material), due to excess dirt and difficult to remove. To make the recycling of this waste economically viable, it is necessary to invest in this recycling chain, so that there is a relevant volume and quality of the material to be recycled.

With regard to the recycling aspect, the investment in some actions seeks to contribute to the increase in the recycling rate of these materials, such as: regional development of the collection system, sorting of waste in cooperatives, recycling and transformation of PCR (Post-Consumer Recycled) into new products. There are no substitute materials, at the moment, that bring quality and safety in transportation and avoid food waste at the end of the chain for the consumer.

Sources:

ecologia.ib.usp.br/portal/microplastico/livro_todo.pdf

https://ceflex.eu/

http://pelletzero.porummarlimp.org.br/

https://echa.europa.eu/documents/10162/22372335/reach_clp_tips_chemicals_of_concern_en.pdf/ca9abe64-609a-4fcb-9e82-3dfd7c69f0c3

https://cefic.org/

Any solid plastic particle or object insoluble in water with any dimension between 1µm and 1000µm (=1mm).

Typically, a microplastic object represents a particle intentionally added to end-user products, such as cosmetics means, coatings, paints, etc. A microplastic object can also result as a fragment of the respective article.

Microplastics may show various shapes.

A large microplastic consists of any solid plastic insoluble in water with any dimension between 1mm and 5mm of plastic or a part of plastic of end-user products or a fragment of the respective article.

Microplastic in the size range are, for example plastic pellets as intermediates for further down-stream processing such as molding, extrusion, etc. resulting to semi-finished products which are not final end-user products.

The five main categories with which it is possible to classify the shape of microplastics found in the natural environment are: pellets, fragments, films, lines and foams.

Pellets are those from petrochemicals and recyclers and are transformed into plastic products through heating and pressure. There are those termed as spheres or microspheres applied in cosmetics.

The fragments originated from the fragmentation of plastic products and, therefore, fragments have irregular shapes.

Toothpastes, soaps, exfoliating creams and shower gels are some examples of personal care products that can intentionally add microplastics in their composition.

The main route of contamination of water bodies by microplastics from primary sources is from domestic and industrial effluents. On the other hand, if plastic particles are formed from environmental weathering, these are said to result from secondary sources. When plastics are improperly released and remain in the natural environment, they are subject to the action of different environmental factors,
such as weathering, ultraviolet radiation and mechanical action, which can promote the fragmentation of these materials into smaller and smaller particles.

ABIPLAST understands that intentional microplastics are no longer used, as their removal from the environment is difficult. Secondary microplastics, on the other hand, originate from mismanagement of waste and improper disposal, being treated through public policies and environmental education and investment.

Regarding the handling of pellets in the industrial environment in the plants of transformers and recyclers of plastic materials, as well as in transportation and distribution, there is the Pellet Zero Program (internalization of Operation Clean Sweep – USA) https://www.abiplast.org.br/noticias/ligado-a-sustentabilidade-programa-pellet-zero-esta-disponivel-na-abiplast/ and http://pelletzero.porumarlimpo.org.br/ with a series of steps and actions in order to minimize and eliminate pellet losses to the environment. ABIPLAST has been a licensor of the program since 2014 in Brazil and has dozens of companies implementing the program in their plants.

(Note: a longer list is included in the co-facilitators' report on the discussions in contact group 1. Submissions may also include information about any of the items on this longer list, such as, but not limited to, developing criteria for prioritizing issues and avoidable plastics; the development of targets for the reduction, reuse and repair of problematic and avoidable plastic products; or the EPR guidelines)

Sources:

http://pelletzero.porumarlimpo.org.br/

Contact group 2:

1. Consider the potential role, responsibilities and composition of a scientific and technical body [to support the negotiation and/or implementation of the agreement]
2. Consider the potential scope and orientation of the National Action Plans [including optional and/or suggested elements]
3. Identify current provisions within existing EAMs [and other instruments] on cooperation and coordination that can be considered
4. Consider how other MEAs provide monitoring and suggest best practices
5. Consider options for defining 'technology transfer' on mutually agreed terms
6. Better consider how a potential financing mechanism could work [including a new stand-alone mechanism, a hybrid mechanism, or an existing mechanism]
7. Identify options to mobilize and align private and innovative funding (including in relation to the issues in 24(e) and the proposed Global Plastic Pollution Rate (GPPF))
8. Map current funding and available funding [to address plastic pollution] and determine the need for financial support for each Member
9. Identify the capacity building and training needs of each Member.