TEMPLATE B

Written Submission

To the Third session of the Intergovernmental Negotiating Committee (INC-3) for the development of an international legally binding instrument on plastic pollution, including in the marine environment

Submitted in accordance with the proposed template.

Name of organization (for observers to the committee)	International Organization for Standardization (ISO)
Contact person and contact information for the submission	Sophie BRUCHEZ, bruchez@iso.org
Noelia GARCIA NEBRA, garcianebra@iso.org	
Date of submission | 14th August 2023

Input on the potential areas of intersessional work to inform the work of INC-3 (following the lists compiled by the co-facilitators of the two contact groups)

Contact group 1:

1. Information on definitions of, e.g. plastics, microplastics, circularity
2. Information on criteria, also considering different applications and sectoral requirements, including:
 a. Chemical substances of concern in plastics,
 b. Problematic and avoidable plastic polymers and products and related applications
 c. Design e.g. for circularity, reuse
 d. Substitutes and alternatives to plastic polymers and products
3. Potential substances of concern in plastics, problematic and avoidable plastic polymers and products
4. Potential sources of release of microplastics (applications and sectors).

(Please note: A longer list is included in the co-facilitators report on discussions in contact group 1). Submissions may also include input on any of the items in that longer list, such as, amongst others, the development of criteria to prioritise problematic and avoidable plastics; the development of targets for the reduction, reuse and repair of problematic and avoidable plastic products; or the guidelines on EPR)

Contact Group 2:

1 The report can be accessed here: https://wedocs.unep.org/bitstream/handle/20.500.11822/42621/CG1.pdf
1. To consider the potential role, responsibilities and composition of a science and technical body [to support negotiation and/or implementation of the agreement]

2. To consider potential scope of and guidance for National Action Plans [including optional and/or suggested elements]

3. To identify current provisions within existing MEAs [and other instruments] on cooperation and coordination that could be considered

4. To consider how other MEAs provide for monitoring, and suggest best practice

5. To consider options to define ‘technology transfer on mutually agreed terms

6. To further consider how a potential financing mechanism could work [including a new standalone mechanism, a hybrid mechanism, or an existing mechanism]

7. To identify options to mobilise and align private and innovative finance (including in relation to matters at 24(e) and the proposed Global Plastic Pollution Fee (GPPF))

8. To map current funding and finance available [to address plastic pollution] and determine the need for financial support for each Member

9. To identify capacity building and training needs for each Member.

ISO thanks the Secretariat for the opportunity to provide input in the intersessional period. As an organization with high sustainability ambitions, ISO is open to collaboration and cooperation within the INC process and in the implementation of the Instrument.

Please find our written input below, on different points raised by Contact Groups.

Contact Group 1

1. **Information on definitions of, e.g. plastics, microplastics, circularity**

ISO standards can be one of the potential sources of definitions that are based on technical expertise and consensus. They are widely used by both private sector and regulators. ISO standards are written by technical experts from across the globe representing a wide range of stakeholders.

ISO vocabulary standards cover many relevant topics, including but not limited to packaging, waste management, recycling, and lifecycle analysis.

We would like to highlight a few key terms that could potentially be helpful to clearly define:

- **Packaging**: product to be used for the containment, protection, handling, delivery, storage, transport and presentation of goods, from raw materials to processed goods, from the producer to the user or consumer, including processor, assembler or other intermediary; or operations involved in the preparation of goods for containment, protection, handling, delivery, storage,
transport and presentation of goods, from raw materials to processed goods, from the producer to the user or consumer².

- Packaging waste: waste from all products made of any materials of any nature to be used for the containment, protection, handling, delivery and presentation of goods, from raw materials to processed goods, from the producer to the user or the consumer³.

- Microplastic: any solid plastic particle insoluble in water with any dimension between 1 µm and 1 000 µm (= 1 mm)⁴.

- Macroplastic: any solid plastic particle or object insoluble in water with any dimension above 5 mm⁵.

- Nanoplastics: plastic particles smaller than 1 µm⁶.

- Compostable plastic: plastic that undergoes degradation by biological processes during composting to yield CO2, water, inorganic compounds and biomass at a rate consistent with other known compostable materials and leave no visible, distinguishable or toxic residue⁷.

- Life cycle: consecutive and interlinked stages of a product system, from raw material acquisition or generation from natural resources to final disposal⁸.

- Ecodesign: systemic approach that considers environmental aspects in design and development with the aim to reduce adverse environmental impacts throughout the life cycle of a product (note: other terminology used worldwide includes “environmentally conscious design (ECD)”, “design for environment (DfE)”, “green design” and “environmentally sustainable design”)⁹.

A full list of relevant definitions can be found in ISO’s Issue brief: ISO definitions of key terms for plastic pollution: https://www.iso.org/publication/PUB100472.html

4. Potential sources of release of microplastics (applications and sectors)

ISO standards can provide information and robust methodology to assess microplastic release, together with other reputable resources such as academic publications. They contain standardized test methods and metrics that could be useful to obtain reliable data and ensure science-based policy action.

Please find below a short list of key international standards/specifications that address the topic of microplastic release:

- ISO 23832:2021 - Plastics — Test methods for determination of degradation rate and disintegration degree of plastic materials exposed to marine environmental matrices under laboratory conditions. This document specifies test methods for the measurement of the physical degradation of plastic samples when exposed to marine environmental matrices at laboratory scale.

² ISO 21067-1:2016 - Packaging — Vocabulary — Part 1: General terms
³ ISO 24161:2022 - Waste collection and transportation management — Vocabulary
⁴ ISO/TR 21960:2020 - Plastics — Environmental aspects — State of knowledge and methodologies
⁵ ISO/TR 21960:2020 - Plastics — Environmental aspects — State of knowledge and methodologies
⁶ ISO/TR 21960:2020 - Plastics — Environmental aspects — State of knowledge and methodologies
⁷ ISO 17088:2021 - Plastics — Organic recycling — Specifications for compostable plastics
⁸ ISO 14040:2006 - Environmental management — Life cycle assessment — Principles and framework
⁹ ISO 14006:2020 - Environmental management systems — Guidelines for incorporating ecodesign
Contact Group 2

2. To consider potential scope of and guidance for National Action Plans [including optional and/or suggested elements]

In the event that the Parties develop National Action Plans (NAPs) to implement the future instrument, National Quality Infrastructure – including standardization and conformity assessment – can play a crucial role in supporting the successful implementation of these NAPs.

National Quality Infrastructures (NQIs) supported by globally recognized standards can be instrumental in helping Governments implement their respective NAPs. A National Quality Infrastructure (NQI) system relies on several key components, including metrology, standardization, accreditation, conformity assessment, and market surveillance. The goals from the ILBI and NAPs are incorporated into national policies, which can then be enforced through laws, regulations, voluntary programs, incentive schemes, and other mechanisms. National Standards Bodies (ISO Members) can support Parties in their implementation of NQI.

International standards can be referenced in national regulation\(^\text{10}\) and are already widely used by the public and private sector, allowing them to be used to facilitate the implementation of multilateral instruments on a national level. Existing NAPs have referenced ISO standards before as well: for example, Denmark’s NAP on the implementation of the UN Guiding Principles on Business and Human Rights suggests businesses use CSR frameworks such as ISO 26000\(^\text{11}\).

International standards can provide step-by-step instructions, metrics and definitions and ensure accountability via conformity assessment.

Conformity assessment helps ensure compliance and accountability. Conformity assessment covers activities such as testing, inspection, auditing, certification, validation, verification, and evaluation, among others. It demonstrates whether products, services, processes, systems meet specific standards and regulations set by the government or relevant authorities, thus providing confidence that, for example, the product or service is safe, reliable, and functions as intended. Conformity assessment is often required by regulatory bodies or market stakeholders to ensure compliance with applicable laws, regulations, and

\(^{10}\) [Policy (iso.org)]

\(^{11}\) [Danish National Action Plan (ohchr.org)]
industry standards. This gives assurance that national objectives are fulfilled. Conformity assessment is performed by conformity assessment bodies (CABs).

Common approaches to conformity assessment and internationally recognized tools ensure competent, consistent and reliable conformity assessment, that allows statements of conformity to be comparable worldwide.

To this end, the standards of the ISO/IEC 17000 (also known as the ISO CASCO Toolbox) series contain requirements for competence, impartiality and consistent operation, which serve as a basis for recognizing the reliability of Conformity Assessment Bodies. These standards are developed and maintained by the ISO Committee on conformity assessment (ISO/CASCO). Find more details on the ISO CASCO Toolbox [here](https://www.iso.org/). In the context of the future instrument, the ISO CASCO Toolbox can assist in the implementation of the NAPs in several ways:

Conformity assessment would help provide confidence in aspects such as recyclability, reusability, upgradability of plastics, as it adds credibility to claims that products, processes, services, or systems meet specific requirements.

- Example: The information contained in a declaration on the share of recycled content in plastic products can be confirmed in a verification process. ISO/IEC 17029 ensures consistent operation and impartiality of validation/verification bodies, which is understood to be a confirmation of reliability of information declared in claims.

The ISO CASCO Toolbox can address compliance needs with conformity assessment, serving as demonstration and attestation that applicable requirements have been fulfilled, irrespective of its methodology (e.g., laboratory tests, measurements, auditing, site visits, satellite monitoring, document review) and activities (i.e., testing, inspection, validation/verification, certification), the bodies performing these activities and their independence (e.g., first-party manufacturers, third-party CAB or public authorities)

- Example: The standards and properties of plastic materials can be tested in a laboratory to assess their suitability for meltdown and recasting and ISO/IEC 17025 enables laboratories to demonstrate that they are technically competent, impartial and consistently able to produce valid and reliable results.

- Example: Recycled plastic products can be certified, including by testing of the product and auditing of the production processes, providing assurance that they are safe for consumers. ISO/IEC 17065 gives assurance that products, processes or services conform with specified requirements in standards and other normative documents of a certification scheme.

The ISO CASCO Toolbox can help measure and demonstrate the implementation of NAPs in a reliable, harmonized and comparable way.

A reference to internationally recognized conformity assessment standards could be included in the implementation elements of the instrument.
3. To identify current provisions within existing MEAs [and other instruments] on cooperation and coordination that could be considered

Among current provisions within existing MEAs, we would like to bring Secretariat’s attention to two existing cooperation-related provisions related to standards that could potentially be helpful in the process of drafting the International Legally Binding Instrument provisions.

- “The Parties shall upon request, make available information, whether on a bilateral or multilateral basis, with a view to promoting the environmentally sound management of hazardous wastes and other wastes, including harmonization of technical standards and practices for the adequate management of hazardous wastes and other wastes” (Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal).

- “States shall cooperate, directly or through international organizations, in establishing scientific criteria for the formulation and elaboration of rules, standards and recommended practices and procedures for the prevention, reduction and control of pollution of the marine environment” (the UN Convention of the Law of the Sea).