The Pew Charitable Trusts submission prior to INC-3 (Part B)

Name of country (for Members of the committee)	
Name of organization (for observers to the committee)	The Pew Charitable Trusts
Contact person and contact information for the submission	Winnie Lau (Project Director, The Pew Charitable Trusts, wlau@pewtrusts.org)
Date of submission	15th August 2023

Input on the potential areas of intersessional work to inform the work of INC-3 (following the lists compiled by the co-facilitators of the two contact groups)

Potential areas for intersessional work

Contact group 1:

1. Information on definitions of, e.g. plastics, microplastics, circularity
2. Information on criteria, also considering different applications and sectoral requirements, including:
 a. Chemical substances of concern in plastics,
 b. Problematic and avoidable plastic polymers and products and related applications
 c. Design e.g. for circularity, reuse
 d. Substitutes and alternatives to plastic polymers and products
3. Potential substances of concern in plastics, problematic and avoidable plastic polymers and products
4. Potential sources of release of microplastics (applications and sectors).

(Please note: A longer list is included in the co-facilitators report on discussions in contact group 1. Submissions may also include input on any of the items in that longer list, such as, amongst others, the development of criteria to prioritise problematic and avoidable plastics; the development of targets for the reduction, reuse and repair of problematic and avoidable plastic products; or the guidelines on EPR)

Contact Group 2:

1. To consider the potential role, responsibilities and composition of a science and technical body [to support negotiation and/or implementation of the agreement]
2. To consider potential scope of and guidance for National Action Plans [including optional and/or suggested elements]

1 The report can be accessed here: https://wedocs.unep.org/bitstream/handle/20.500.11822/42621/CG1.pdf
3. To identify current provisions within existing MEAs [and other instruments] on cooperation and coordination that could be considered

4. To consider how other MEAs provide for monitoring, and suggest best practice

5. To consider options to define ‘technology transfer on mutually agreed terms

6. To further consider how a potential financing mechanism could work [including a new standalone mechanism, a hybrid mechanism, or an existing mechanism]

7. To identify options to mobilise and align private and innovative finance (including in relation to matters at 24(e) and the proposed Global Plastic Pollution Fee (GPPF))

8. To map current funding and finance available [to address plastic pollution] and determine the need for financial support for each Member

9. To identify capacity building and training needs for each Member.

Inputs relating to potential areas for intersessional work.

Contact Group 1

We support the topics identified by Contact Group 1 for intersessional work. Below we provide input on selected topics relevant to Pew’s previous studies and areas of expertise, including several from the longer list included in the co-facilitators report on discussions in contact group 1.

2. Information on criteria, also considering different applications and sectoral requirements, including:

 b. Problematic and avoidable plastic polymers and products and related applications

We recommend that the treaty take a comprehensive, holistic, preventative, and precautionary approach to tackling plastic pollution. Our recommendations for criteria to identify problematic and avoidable plastic polymers, products and related applications are intended to help prioritize which polymers or product categories should be tackled first. We anticipate that the criteria and list of polymers and products will need to evolve over time.

We recommend that the following criteria be considered:

- Impact of plastic polymer/product on human health and the environment during the production, use and waste management phase of its life-cycle;
- Probability of the plastic polymer/product ending up in the environment;
- Impacts on the environment and human health when this occurs.

These criteria build upon those developed in WWF & Eunomia (2023) which takes a risk-based approach based on two factors: (1) Probability of the plastic ending up in the environment; (2) Impacts on the environment and human health when this occurs. We recommend the inclusion of an additional criterion to assess impacts at all stages of the life-cycle. As stated in WWF & Eunomia (2023), “Current data enables clear conclusions related to the most polluting plastic product categories. It shows, with a high level of confidence, that certain product groups and indeed specific products are key contributors to plastic pollution”.

We recommend that a sectoral approach is taken to identifying lists of polymers and product categories for priority action, as problematic products are likely to differ across sectors. Where available, a range of types of data sources should be considered in assessing the above risks, including coastal, terrestrial, marine and freshwater monitoring data and modelling studies.
It is also important to consider these criteria from a geographic perspective. We note that in locations where there is no waste collection service, all plastic packaging should be considered problematic unless a) it is part of a re-use or refill system; or b) it can be demonstrated that 90% or more of what is placed on the market in such locations is returned through take back schemes or other initiatives (Eunomia, 2021). In such locations, plastics should not be the material of choice to deliver products.

An example of the application of a subset of these criteria is the EU Single Use Plastics Directive. Data from coastal clean-ups were used to identify the items most frequently documented on European beaches and a package of policy measures was developed to target the top ten items (European Commission Directorate-General for Environment, 2018).

As well as the plastic items often found in the environment, there are a range of packaging items which are already being demonstrated to be ‘unnecessary’, either because products can be sold without packaging, or because options for re-use / refill approaches exist. These should also be targeted for elimination, or significant reductions (Eunomia, 2021).

Although development of criteria and lists of priority items is a good first step, a more comprehensive approach is needed. The collective impact of all current national and municipal legislation regarding items such as straws, bags, stirrers, cups, cotton swabs, and bottles will not add up to a significant reduction in the overall quantity of plastic waste generated and leaked globally. Based on analysis conducted in Breaking the Plastic Wave, even if legislation akin to the European Union single-use plastics directive, was emulated by all countries and implemented globally, it would reduce plastic leakage to the ocean by only 15% compared with BAU by 2040. Governments need to act to curb the growth in plastic production; set system-wide standards, targets, and incentives to drive upstream reduction, reuse, appropriate substitution and design for circularity; and invest in collection and recycling infrastructure (The Pew Charitable Trusts & Systemiq, 2020).

2. Information on criteria, also considering different applications and sectoral requirements, including:

c. Design e.g. for circularity, reuse

We note that recent studies indicate the need for reuse standards in order to achieve a large-scale transition to reuse (Global Plastics Policy Centre, 2023). This includes the need for an international definition of reuse and standardization of packaging and reuse systems. Standardization should include “the size and shape of reusable packaging, labelling, tagging, washing, and required hygiene levels to avoid the development of isolated silos of reuse” (Global Plastics Policy Centre, 2023).

One example of a reuse standard is the PR3 Reusable Packaging System Design Standard which sets core requirements for aligning reuse systems between companies and brands, allowing businesses to share infrastructure.

Criteria for reuse should take into account:

• An agreed measure of the sustainability breakeven point of a reuse system – reusable packaging must be used more times than its sustainability breakeven point, after which each use of the packaging has less environmental impact than its single-use equivalent (Global Plastics Policy Centre, 2023).
• Standardised packaging design requirements e.g. format (size and shape), labelling, tagging and material. For more extensive information on design requirements see the reusable packaging design standard from PR3, including the standard for reuse containers.

• Material requirements and hazardous chemicals: As detailed in Geueke et al. 2023 “reusing and recycling plastics can also lead to unintended negative impacts because hazardous chemicals, like endocrine disrupters and carcinogens, can be released during reuse and accumulate during recycling”. Materials used for reusable packaging therefore need to avoid hazardous chemicals, particularly in food contact materials.

• Standardised washing, sanitization and handling requirements (PR3, 2021).

• Standardised, interoperable reuse infrastructure (e.g. collection points, washing facilities, reverse logistics) and establishment of return incentives (PR3, 2021).

Design criteria and standards could also enhance recycling rates. In Breaking the Plastic Wave, the following recycling levers were modelled:

(1) Switching 50% of multimaterial flexibles to monomaterial flexibles by 2030 and 100% by 2040.

(2) Switch 5% of multimaterial rigid household goods to monomaterial rigids by 2030 and 10% by 2040.

(3) Redesign (or remove) dyes, plastic pigments, and additives.

(4) Increase homogeneity and cleanliness of recycling inputs and eliminate problematic polymers (such as PVC, PS, EPS) and packaging formats.

(5) Improve labelling.

Design for recycling interventions can increase both the yield and value of recycled plastic. Taken together, the five design for recycling levers outlined above could significantly expand the share of plastic that is economically recyclable mechanically. In high-income countries, an estimated 54% of plastic waste could be economically recyclable within system constraints by 2040, up from 21% today (The Pew Charitable Trusts & Systemiq, 2020).

Recent studies have indicated the need to transition away from flexible plastic packaging – the fastest-growing packaging sector (EMF, 2022). It comprises 30-40% of all plastic packaging by weight but is not recycled at scale (EMF, 2022). Recycling rates of consumer flexible packaging are very low, with the highest in Europe at <8% (EMF, 2022). Most flexible packaging is “down-cycled” into applications of lower material quality (EMF, 2022). Moreover, monomaterial flexible and multi-layer/multimaterial plastics constitute 80% of macroplastic leakage (The Pew Charitable Trusts and Systemiq, 2020).

In development of criteria to increase recycling rates, particular attention is needed with respect to food contact materials due to the potential accumulation of hazardous chemicals in recycled material and migration to food and beverages (Geueke et al., 2023). There are also technical limitations in closed-loop recycling of food packaging due to “inherent physico-chemical properties of the materials that hamper the efficient removal of chemical contaminants” (Geueke et al., 2023; Palkopoulou et al., 2016).
2. **Information on criteria, also considering different applications and sectoral requirements, including:**

d. **Substitutes and alternatives to plastic polymers and products**

Substitution of plastic with alternative materials should be evaluated on a case-by-case basis depending on the desired application and geography. Substitutes are typically more expensive than plastics and their carbon and environmental impact could be better or worse depending on the specific material/geography in question. A reduction in plastic production—through elimination, the expansion of consumer reuse options or new delivery models—is the most attractive solution from an environmental, economic, and social perspective. It offers the biggest reduction in plastic pollution, often represents a net savings, and provides the highest mitigation opportunity in GHG emissions. Designing products for reuse is preferable to simple substitution with another single-use material. However, where this is not possible, substitute materials may be appropriate for certain applications.

In the analysis conducted in *Breaking the Plastic Wave* a four-criteria framework (see Figure 1 below) was used to determine the maximum feasible uptake of each reduce and substitute solution for each of the 15 product subcategories. Each solution was scored against four criteria labelled A-D, with its lowest score determining its “limiting factor” of 1-4. Each limiting factor was assigned a corresponding market penetration potential in 2030 and 2040, based on an analysis of the speed of historical socio-technical shifts (see the technical appendix for Lau et al., 2020). For example, combinations with a limiting factor score of 3 out of 4 were assumed to reach 20 per cent market penetration by 2030 and 50 per cent by 2040. While this framework was developed for modelling purposes, similar criteria could be used to assess substitutes and alternatives to plastic polymers and products. Performance requirements should take into account the human health and environmental impacts of the substitute material across its life cycle. For food contact materials particular attention should be paid to the need to prevent the potential migration of hazardous chemicals into foodstuff (Geueke et al., 2023).

Figure 1: Four criteria framework used to determine the maximum feasible uptake of reduce and substitute solutions in Breaking the Plastic Wave

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Overall score</th>
<th>2030 market penetration</th>
<th>2040 market penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Performance</td>
<td>Convenience</td>
<td>Affordability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes: Technology Readiness Level (TRL 9, available in multiple locations)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (net savings or acceptable cost)</td>
<td>4</td>
<td>50%</td>
<td>80%</td>
</tr>
<tr>
<td>Only at pilot TRL 5-8</td>
<td>Mostly (but not for all applications)</td>
<td>Mostly (some challenges)</td>
<td>Mostly (but not for all applications)</td>
<td>3</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>Only in labs: TRL 1-4</td>
<td>Partially (some applications only)</td>
<td>Partially (some consumers)</td>
<td>Partially (some consumers)</td>
<td>2</td>
<td>1%</td>
<td>10%</td>
</tr>
<tr>
<td>No alternative available</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

3. Potential substances of concern in plastics, problematic and avoidable plastic polymers and products

Potential substances of concern

Substances of concern in plastic include both hazardous chemicals used in the manufacturing of plastics, and non-intentionally added substances (Muncke, 2021). Groh et al. (2019) compiled a database of chemicals associated with plastic packaging and found that, “Of the 906 chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 for environmental hazards according to the harmonized hazard classifications assigned by the European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation implementing the United Nations’ Globally Harmonized System (GHS). Further, 7 of the 906 substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the United Nations Environment Programme.” The most hazardous substances identified should be prioritized for further assessment and removal of their use in plastic packaging (Groh et al., 2019).

Problematic plastic products

Our research, as published in the peer-reviewed report Breaking the Plastic Wave, shows that five product types contribute 85% of municipal solid waste macroplastic leaking into the ocean today (The Pew Charitable Trusts & Systemiq, 2020).

These are:

- monomaterial films (e.g. Pouches, trash bags, wraps, 6-rings, netting and other flexibles),
- carrier bags,
- bottles (including beverage and non-food bottles),
- sachets and multilayers, and
- household goods.

We note that this analysis looked at municipal solid waste only and therefore does not reflect the proportion of plastic pollution arising from waste that does not typically enter the municipal waste stream, such as that from construction, agriculture or the marine sector.

Upstream solutions – reduction and substitution – are particularly important in that they could tackle nearly half of the plastic (macro and micro) that will need to be addressed. Broadly speaking, by 2040, nearly half of the plastic in the global system under a business-as-usual scenario could be removed through upstream solutions in the system change scenario modelled. Reduce is also an important solution for many of the five product categories noted above. Specifically: As much as 25% of monomaterial films; 45% of carrier bags; 43% of bottles; and 44% of sachets and multilayer film could be addressed through reduce strategies, in ways that do not demand a reduction in consumption but rather an elimination of avoidable plastic and shift towards products and services based on reuse.

Additionally, we found that particular types of plastic contribute disproportionately to plastic pollution (relative to their production volumes) - flexible monomaterials and multilayer plastic make up 59% of production but contribute 80% of macroplastic leakage from municipal solid waste (The Pew Charitable Trusts and Systemiq, 2020).

Analyses such as those conducted by Pew and other organizations provide a starting point for prioritizing product applications and plastic types to be addressed with targeted measures, that should be built upon within the global treaty discussions and is not intended to represent a comprehensive list. We emphasize
the need for an approach that goes beyond an item-by-item approach and introduces measures to progressively reduce plastic production and consumption and support a transition to reuse. For the ILBI to be successful in its overarching objective, measures under core obligation 2 and 3, must be undertaken alongside the other core obligations put forward in UNEP/PP/INC.2/4.

4. Potential sources of release of microplastics (applications and sectors).

Based on modelling of four sources of microplastics (The Pew Charitable Trusts & Systemiq, 2020) and other subsequent studies (Paruta et al. 2022), microplastics account for around a quarter of global plastic pollution to the environment (noting that the scope of our modelling of macro-plastic included items and sectors that enter municipal solid waste only). Policy measures should be commensurate with the scale of microplastic pollution and should include legally-binding obligations to address all sources of microplastic pollution, based on the best available evidence.

Based on our modelling (The Pew Charitable Trusts & Systemiq, 2020), and other analyses cited below, sources of microplastics include the following:

- Paint (e.g., architectural, marine, general industrial, road markings, automotive, industrial wood; Paruta et al. 2022))
- Tyres
- Pellets, flakes and powders used in the production, conversion and recycling of plastics.
- Textiles
- Microplastic ingredients: Based on analysis by the European Chemicals Agency (ECHA, 2019), intentionally-added microplastics can be found in a range of products, including fertilisers, plant protection products (e.g. seed coatings), cosmetics, household and industrial detergents, cleaning products, paints and products used in the oil and gas industry.
- Infill material on artificial turf sports pitches (ECHA, 2019)
- Agricultural plastics (Lwanga et al., 2022)
- Geosynthetics – plastics used in construction such as geomembranes, geotextiles etc. (Bai et al., 2022).

Given the magnitude of microplastic emissions, we emphasise the need for binding measures to address microplastic emissions under core obligation 4. Additional measures may be needed under other core obligations. Measures should include:

- Mandatory requirements across the supply chain based on Best Available Techniques (BATs) and Best Environmental Practices (BEPs), including for example:
 - Pellets: (1) regulatory requirements that all companies that handle plastic pellets provide independent, third-party verification that pellet loss prevention measures are implemented, maintained and monitored for effectiveness at every stage of the supply chain; and (2) Mandatory measures to improve packaging and labelling of pellets for transport, including transport at sea.
 - Textiles: (1) controls on emissions from production and manufacturing e.g. methods to minimize airborne and aquatic pollution, pre-washing of textiles and wastewater treatment protocols.

- Design requirements and emission controls, including for example:
The Pew Charitable Trusts submission to INC-3 (Part B) / INC on Plastic Pollution / 15 August 2023

- Tyres: Emission limits for tyres, taking into account the work performed in the UN World Forum for Harmonization of Vehicle Regulations (WP29).

- Textiles: (1) controls on emissions from production and manufacturing; and (2) fabric specification guidelines such as fibre and yarn type, structure and chemical/mechanical finishing as these impact microfibre shedding rates during use.

- Bans/restrictions on the use of microplastic ingredients in all products that are likely to enter the environment under normal or reasonably foreseeable conditions of use, including for example personal care products, cleaning and laundry products, agricultural fertilizers and seed coatings.

These examples are intended to provide an indicative list and are not intended to be comprehensive in covering all sources. We refer to the joint submission by members of the microplastics working group within the Civil Society and Rights Holder Coalition for further information, included recommended next steps for intersessional work on microplastics.

Additional input on items in the longer list included in the co-facilitators report on discussions in contact group 1.

- **Compilation of a list of problematic single use plastics banned by governments and existing criteria used by governments as an INF doc**

The Pew Charitable Trusts, along with the International Institute for Sustainable Development (IISD) and Duke University, presented research on the types of trade measures most often used to address plastic pollution at an event for WTO members and stakeholders on April 19, 2023. At this event IISD and Duke University presented their analyses of the WTO Environmental Database and the Duke Plastic Policy Inventory, showing that bans – particularly on plastic bags – is the primary trade measure used by WTO Members. Bans also covered other items such as food containers, tableware, certain plastic packaging, straws, cotton buds, polystyrene, microplastics and plastic bottles. Other types of policy measures that are relatively frequent include technical regulations (on a variety of products) and import licensing schemes (with a strong focus on plastic waste) (See Figure 2).

Figure 2: Types of plastic products targeted by notified measures (2009-2021)

As IISD note, such policies could be taken up by other countries for a “geographic expansion”, with experience-sharing helping to foster coherence around best approaches. However, a “thematic expansion” to other products will also be needed.

In addition, as shown in *Breaking the Plastic Wave* and described under 2b above, to achieve a significant reduction in plastic pollution, Governments will also need to act to curb the growth in plastic production; set system-wide standards, targets, and incentives to drive upstream reduction, reuse, appropriate substitution and design for recycling; and invest in collection and recycling infrastructure.

Analysis of over 20 years of Government responses to plastic pollution (Karasik et al., 2022) highlights that national plastics policies have increasingly targeted plastic bags and other single-use plastics, but that relatively few countries have addressed microplastics or marine sources of plastic pollution, despite their contribution to plastic pollution (see Figure 3).

Figure 3: National Policy Documents Targeting Each Plastic Type

Source: Karasik et al. (2022)
Contact Group 2:

We support the topics identified by Contact Group 2 for intersessional work. Below we provide input on selected topics relevant to Pew’s previous studies and areas of expertise.

1. **To consider the potential role, responsibilities and composition of a science and technical body [to support negotiation and/or implementation of the agreement]**

 The role of this body could be to provide independent and authoritative research and support to aid implementation, including defining terms not defined within the instrument; reviewing standards for product design, reuse, recycling and material substitution; establishing guidelines for life cycle assessment; assessing the effectiveness of different solutions; assessing the environmental impacts of production and waste management technologies; translating global goals to national targets; and assessing progress of national plans and international efforts towards near-zero plastic pollution, among others. The scientific body should also conduct periodic reviews of the latest science and available technologies to inform countries and support the strengthening of the instrument over time.

2. **To consider potential scope of and guidance for National Action Plans [including optional and/or suggested elements]**

 The future instrument should include legally-binding obligations, control measures and targets. National action plans would provide a mechanism for countries to transpose these obligations and set out the specific policies and measures to be enacted at a national level. Submission of plans should be binding and plans should be updated and made more progressive over time, at a rate agreed by Parties. Harmonised templates and guidance for national action plans should be developed. There should be a non-punitive review of progress through a stocktaking procedure which is embedded in the instrument.

3. **To identify current provisions within existing MEAs [and other instruments] on cooperation and coordination that could be considered**

 Provisions on cooperation and coordination should consider the relationship between nations (including the needs and capacities of LDCs and SIDS), the relationship to stakeholder groups, and the relationship to other multilateral organizations and agreements.

 The new agreement should include obligations on human rights and health, and a commitment to work with all stakeholders to implement the agreement – including indigenous peoples and local communities, the informal sector, civil society, business and industry, and the scientific community.

 Provisions on cooperation and coordination should also include requirements to work with other multilateral organizations to encourage information sharing, complementarity, and synergies towards success. This could include provisions to notify the Secretariat on actions carried out, or further cooperation and notification to other multilaterals (e.g. WTO, BRS, IMO, FAO, UNFCCC and others).

 The INC may wish to consider the provisions on cooperation and coordination in other MEAs, including:

 - **UNFCCC and the Paris Agreement**
 - The Paris Agreement provides a framework for cooperation and coordination through provisions on providing financial assistance, realizing technology development and transfer, and capacity building. The Paris Agreement also emphasizes that issues which are
the “common concern of humankind” should consider obligations on human rights, the rights of indigenous peoples, local communities, and gender equality.

- The Convention on Biodiversity (CBD) and the Kunming-Montreal Global Biodiversity Framework
 - The CBD’s Global Biodiversity Framework, adopted in December 2022, will be supported by decisions on resource mobilization (CBD/COP/DEC/15/7), capacity-building and development and technical and scientific cooperation (15/8), and cooperation with other conventions and international organizations (15/13). The GBF emphasizes the importance of access to adequate financial resources, capacity-building, technical and scientific cooperation, and access to and transfer of technology. It also emphasizes the importance of working with all stakeholders and in cooperation with other multilaterals.

- Basel, Rotterdam, and Stockholm conventions
 - The Basel Convention assigns its Secretariat the responsibility of ensuring necessary coordination with relevant international bodies. Article 10 outlines areas of cooperation for parties including sharing information, monitoring, improving technologies, developing technical capacity, and developing technical guidelines.

- The Montreal Protocol
 - The Montreal Protocol is perhaps one of the most successful MEAs – it too emphasizes the importance of cooperating on researching, developing, and exchanging information on best technologies, alternatives to substances, and cost/benefits to control strategies. The Protocol also includes provision on promoting awareness of environmental effects with a requirement to submit to its secretariat a summary of activities conducted. Parties may also submit a request to the Secretariat for technical assistance.

4. **To consider how other MEAs provide for monitoring, and suggest best practice**

Monitoring will be an essential part of the new agreement in order to monitor progress and assess where greater action may be needed. Harmonised monitoring protocols should be established, building on protocols already developed by regional seas conventions.

The INC may wish to consider the provisions on monitoring in other MEAs, including:

- The UNFCCC adopted the following guiding principles for monitoring:
 - Building on and enhancing the transparency arrangements under the Convention, recognizing the special circumstances of the LDCs and SIDS, and implementing the transparency framework in a facilitative, non-intrusive, non-punitive manner, respecting national sovereignty and avoiding placing undue burden on Parties;
 - The importance of facilitating improved reporting and transparency over time;
 - Providing flexibility to those developing country Parties that need it in the light of their capacities;
 - Promoting transparency, accuracy, completeness, consistency and comparability;
 - Avoiding duplication of work and undue burden on Parties and the secretariat;
 - Ensuring that Parties maintain at least the frequency and quality of reporting in accordance with their respective obligations under the Convention
 - Ensuring that double counting is avoided; and
 - Ensuring environmental integrity.

- The Kunming-Montreal global biodiversity framework (GBF) adopted in December 2022 has four long-term goals for 2050. Goal D requires: "Adequate means of implementation, including
financial resources, capacity-building, technical and scientific cooperation, and access to and transfer of technology to fully implement the Kunming-Montreal global biodiversity framework are secured and equitably accessible to all Parties, especially developing countries, in particular the least developed countries and small island developing States, as well as countries with economies in transition”. The GBF contains 23 action-oriented global targets to be initiated immediately and completed by 2030, several of which pertain to monitoring, including:

- Target 15 to implement policy measures to encourage and enable business, transnational companies, and financial institutions to “regularly monitor, assess, and transparently disclose their risks, dependencies and impacts on biodiversity...”;
- Target 20 to strengthen capacity-building and development, including strengthening scientific research and monitoring capacities, and;
- Target 21 to ensure that best available data, information and knowledge, are accessible to decision makers, practitioners, and the public...to strengthen monitoring, research, and knowledge management.

Finally, the achievement of the GBF’s four long-term goals is supported by a monitoring framework as outlined in Decision CBD/COP/DEC/15/5. The monitoring framework includes global level indicators to be included in national reporting templates and can be supplemented by national and subnational indicators.

6. To further consider how a potential financing mechanism could work [including a new standalone mechanism, a hybrid mechanism, or an existing mechanism]

Implementing the new Agreement and mobilizing action to tackle the plastic problem will require new investments across the plastics supply chain. According to our research in Breaking the Plastic Wave, to achieve a system change that reduces plastic pollution by 80% by 2040, we will need “a substantial shift of investment away from the production and conversion of virgin plastic, into the deployment of new delivery models, substitute materials, recycling and collection infrastructure”. However, pursuing a system change could save governments US$70 billion in present value between 2021 and 2040. A funding mechanism under the new Agreement should aim to catalyze change by targeting its resources to countries which lack the resources to address the challenge.

References:

Muncke, J. 2021. Tackling the toxics in plastics packaging. *PLOS Biology* 19(3): e3000961. https://doi.org/10.1371/journal.pbio.3000961

